Les exercices numérotés sont tirés de l'ouvrage : Exercices de chimie générale, Comninellis, Friedli, Sahil, Presses polytechniques et universitaires romandes, 2018.

Exercice 1 (3.1.6)

L'énergie minimale pour arracher l'électron 3s du sodium correspond à 5,14 eV. Calculer la longueur d'onde de la lumière correspondante.

Exercice 2 (3.2.11)

Quelle est la longueur d'onde d'un photon émis durant une transition de n = 5 à n = 2 dans un atome d'hydrogène ?

Exercice 3 (3.2.12)

Dans un atome d'hydrogène, un électron est situé sur une orbite n=2. Un photon dont la longueur d'onde λ est de 656 nm provoque sa transition vers une autre orbite. Déterminer le niveau de cette orbite.

Exercice 4 (3.1.1.)

Combien d'électrons une couche dont le nombre quantique principal *n* vaut 3 peut-elle accueillir au maximum ?

Exercice 5 (3.1.9)

Dans l'atome de cuivre à l'état fondamental, combien d'électrons sont caractérisés par le nombre quantique magnétique $m_1 = +1$? (Remarque : la configuration électronique du cuivre à l'état fondamental est [Ar] $4s^1$ $3d^{10}$ et non [Ar] $4s^2$ $3d^9$ comme on l'aurait prédit avec la règle de l'Aufbau)

Exercice 6 (3.2.9)

Dans l'atome de cadmium à l'état fondamental, combien d'électrons sont caractérisés par le nombre quantique $m_1 = -2$.

Exercice 7 (3.1.2)

Parmi les configurations électroniques ci-dessous, qui ne correspondent pas à un état fondamental, lesquelles représentent un état excité et lesquelles sont impossibles (c'est-à-dire violent une loi ou un principe fondamental) ?

- a) $1s^2 2s^1 2p^1$
- b) $1s^2 2s^2 2p^6 3s^2 3p^2 3d^2$
- c) $1s^2 2s^2 2p^6 3s^3$
- d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10} 4p^3$
- e) $1s^2 2s^2 2p^6 2d^2$

Exercice 8 (3.1.4)

La configuration électronique d'un atome neutre est la suivante :

$$1s^2 \ 2s^2 \ 2p^6 \ 3s^1 \ 3p^5$$

Quel est le numéro atomique de cet élément ?

Dans quel état de configuration cet atome se trouve-t-il?

Combien d'électrons célibataires contient-il dans cette configuration ?

Quelles valeurs les nombres quantiques n et ℓ prennent-ils pour les électrons $3p^5$?

Exercice 9 (3.2.4)

Ecrire la configuration électronique à l'état fondamental des ions suivants :

Exercice 10 (3.2.7)

A l'état fondamental, combien d'électrons célibataires devrait-on trouver dans les espèces chimiques suivantes : N, Ar, Sr²⁺ ?